Prepare and transform the data
Calculate essential summary statistics, do crosstabulation, write your own summary functions, and visualize data with the ggplot2 package
Build predictive models, evaluate and compare models, and generate predictions on new data
Certification
You will get a certificate on completing this course.
University
The course is not from a very prestigious university.
Price
This course is costly - Rs. 7018/-.
Difficulty
The students of this course have found this course difficult.
Content
The students of this course have liked the content of this course.
Teaching
The students of this course have liked how the instructor has taught this course.
Satisfaction
The students of this course are overall satisfied with this course.
Edvicer's Rewards
You can get a cashback of ₹ 250 on buying this course.
Limited Time Discount Offers
Save your money with Edvicer. Check out our premium courses with discount offers.
Save your money with Edvicer. Check out our premium courses with discount offers.
Map your Career
Not sure which job profiles this course will open for you? Check out our AI based tool to get a complete personalized career map.
Not sure which job profiles this course will open for you? Check out our AI based tool to get a complete personalized career map.
Certification
You will get a certificate on completing this course.
University
The course is not from a very prestigious university.
Price
This course is costly - Rs. 7018/-.
Difficulty
The students of this course have found this course difficult.
Content
The students of this course have liked the content of this course.
Teaching
The students of this course have liked how the instructor has taught this course.
Satisfaction
The students of this course are overall satisfied with this course.
Edvicer's Rewards
You can get a cashback of ₹ 250 on buying this course.
This course is part of theÃÂ Microsoft Professional Program Certificate in Data Science and the Microsoft Professional Program Certificate in Big Data..The open-source programming language R has for a long time been popular (particularly in academia) for data processing and statistical analysis. Among R's strengths are that it's a succinct programming language and has an extensive repository of third party libraries for performing all kinds of analyses. Together, these two features make it possible for a data scientist to very quickly go from raw data to summaries, charts, and even full-blown reports. However, one deficiency with R is that traditionally it uses a lot of memory, both because it needs to load a copy of the data in its entirety as a data.frame object, and also because processing the data often involves making further copies (sometimes referred to as copy-on-modify). This is one of the reasons R has been more reluctantly received by industry compared to academia. The main component of Microsoft R Server (MRS) is the RevoScaleR package, which is an R library that offers a set of functionalities for processing large datasets without having to load them all at once in the memory. RevoScaleR offers a rich set of distributed statistical and machine learning algorithms, which get added to over time. Finally, RevoScaleR also offers a mechanism by which we can take code that we developed on our laptop and deploy it on a remote server such as SQL Server or Spark (where the infrastructure is very different under the hood), with minimal effort. In this course, we will show you how to use MRS to run an analysis on a large dataset and provide some examples of how to deploy it on a Spark cluster or a SQL Server database. Upon completion, you will know how to use R for big-data problems. Since RevoScaleR is an R package, we assume that the course participants are familiar with R. A solid understanding of R data structures (vectors, matrices, lists, data frames, environments) is required.ÃÂ Familiarity with 3rd party packages such as dplyr is also helpful.edX offers financial assistance for learners who want to earn Verified Certificates but who may not be able to pay the fee. To apply for financial assistance, enroll in the course, then follow this link to complete an application for assistance.
Read data from flat files into Rs data frame object, investigate the structure of the dataset and make corrections, and store prepared datasets for later use
Prepare and transform the data
Calculate essential summary statistics, do crosstabulation, write your own summary functions, and visualize data with the ggplot2 package
Build predictive models, evaluate and compare models, and generate predictions on new data
Write your review of Analyzing Big Data with Microsoft R
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |